
Parsing Protocol Standards 
draft-mcquistin-augmented-ascii-diagrams

Stephen McQuistin
Vivian Band
Dejice Jacob
Colin Perkins

Virtual Formal Languages Side Meeting
15 May 2020



Improving protocol standards

2

• Goal: shift towards a test-driven development style 
approach, where running a suite of validation and 
verification tools over a standards document becomes 
commonplace

• Don’t want to replace the process, but to augment it



Describing protocol parsing

3

• First aim: build a tool that allows for a parser for the specified 
protocol to be generated automatically

• Need a machine-readable description of the protocol’s data 
units, and all the metadata needed to parse them

• Good place to start: knowing what the protocol looks like 
forms the basis of more complex tools



Design principles
• Most readers are human

• Authorship tools are diverse

• Canonical specifications

• Expressiveness

• Minimise required change

4



5

ASCII packet diagrams



6

ASCII packet diagrams

ASCII diagrams already 
specify much of the 

protocol’s syntax



ASCII packet diagrams

7

ASCII diagrams already 
specify much of the 

protocol’s syntax



ASCII packet diagrams

8

ASCII packet diagrams

ASCII diagrams already 
specify much of the 

protocol’s syntax



ASCII diagrams already 
specify much of the 

protocol’s syntax

ASCII packet diagrams

9



ASCII packet diagrams

10



ASCII packet diagrams

11



ASCII packet diagrams

12



ASCII packet diagrams

13



ASCII packet diagrams

14

Many variations with 
subtle differences → difficult to parse



Augmented ASCII diagrams

15

• Much can be achieved just by being consistent

• Need other elements: constraints on field values, optional 
fields, links between PDUs, …

• Adheres to the design principles given earlier



Parsing protocol standards

16

RFC DOM

• Parse input into an RFC document object 
model

• RFC DOM is already well specified

• Allows for different input formats



Parsing protocol standards

17

RFC DOM Intermediate 
representation

• Extract a protocol definition from the RFC DOM, 
and capture it in an intermediate representation

• Captures the syntax of the protocol and how to 
parse it

• Allows for different input languages, whose 
expressivity might vary



Parsing protocol standards

18

RFC DOM Intermediate 
representation

• Intermediate representation captures all of 
metadata required to parse the protocol

• The layout of each PDU

• Parsing context for out-of-band data

• Helper methods for encrypted fields 



Parsing protocol standards

19

RFC DOM Intermediate 
representation

Parsers

• Generate parser code from the 
intermediate representation

• Split means that a parser generator only 
needs to be written once per output 
language



Summary

20

• IETF standardisation process can create ambiguous standards: 
want to introduce tooling without harming the parts of the process 
that work well

• ASCII diagrams already capture much of a protocol’s syntax

• Augmenting ASCII diagrams and using them consistently allows 
tooling to extract protocol syntax

• Capturing protocol parsing in a common intermediary format allows 
for flexibility

• Automated parser generation from the intermediary format enables 
test-driven development → better standards


