
Parsing Protocol Standards to Parse Standard
Protocols

Stephen McQuistin
University of Glasgow
sm@smcquistin.uk

Vivian Band
University of Glasgow

vivianband0@gmail.com

Dejice Jacob
University of Glasgow

d.jacob.1@research.gla.ac.uk

Colin Perkins
University of Glasgow
csp@csperkins.org

ABSTRACT
Internet protocol standards have been slow to adopt formal
protocol description languages and methodologies, and are
still largely written as English prose. This makes it hard
to check them for correctness, or to automatically derive
implementations from standards. Reasons for this are both
technical and social. Somemethodologies effectively describe
complex communication patterns, but cannot model protocol
data. Others are unnecessarily tied to particular description
formats, or use unfamiliar concepts and terminology, and
don’t address usability by standards developers.
We assess the viability of existing approaches to model-

ling and parsing protocol data, and identify missing features
needed to represent emerging protocols. We present a typed
protocol representation that can describe: (i) the format of
protocol data, including data-dependent formats; (ii) con-
textual information needed to maintain parser state, where
correct parsing may depend on out-of-band information or
prior packets; and (iii) transformations and helper functions
needed for multi-stage parsing. We discuss social barriers to
adoption, and describe a set of principles to encourage use
of formal languages within the Internet standards process.
We show how to integrate our approach with the existing
standards process, using QUIC as an example.

CCS CONCEPTS
• Networks→ Protocol correctness; • Software and its
engineering→ Domain specific languages.

ACM Reference Format:
Stephen McQuistin, Vivian Band, Dejice Jacob, and Colin Perkins.
2020. Parsing Protocol Standards to Parse Standard Protocols. In
Applied Networking Research Workshop (ANRW ’20), July 27–30,

ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Applied Networking Research Workshop (ANRW ’20), July 27–30, 2020,
Online (Meetecho), Spain, https://doi.org/10.1145/3404868.3406671.

2020, Online (Meetecho), Spain. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3404868.3406671

1 INTRODUCTION
The process by which Internet protocols are standardised is
largely centred around documents written in English prose.
To some extent, this is desirable: prose documents are useful
for exchanging ideas, facilitating discussion, and building
consensus. However, as protocols become more complex, the
limitations of this approach become clear. Inconsistencies
and ambiguities are easily introduced into the standards,
making it difficult to develop implementations that conform
to the specification. Use of formal specification languages
would make the standards documents more machine read-
able. This would make them easier to test, and would help to
support, for example, automatic generation of packet parser
code from the specification. Use of such formalisms is, how-
ever, not common in Internet protocol standards.

There are technical and non-technical reasons for the slow
adoption of formal description techniques by the Internet
standards community. Technical limitations include protocol
description languages that cannot fully describe the syntax of
modern protocols.Weaknesses of current formal descriptions
include formalisms that effectively model abstract commu-
nication patterns, but cannot describe the protocol data being
exchanged. On the non-technical side, models may tightly
integrate with unfamiliar protocol description languages or
assume familiarity with concepts that are not widely known
outside the formal modelling community. Moreover, adop-
tion of new techniques requires engineers developing pro-
tocol standards to learn new skills for seemingly uncertain
future benefits, and to overcome organisational inertia.
If the Internet standards development community is to

adopt formal protocol description and modelling techniques,
to help ensure correctness of its protocol specifications, then
those techniques will need to be usable within the existing
standards development process, and will need to be usable by
existing standards developers. In this paper, we consider one
part of this problem: how to describe protocol data, and how

https://doi.org/10.1145/3404868.3406671
https://doi.org/10.1145/3404868.3406671

ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain Stephen McQuistin, Vivian Band, Dejice Jacob, and Colin Perkins

to parse and serialise that data into packets. Importantly, we
show how to do this in a way that integrates within the IETF
standards process, in a general-purpose manner that allows
for a range of protocol description formats to be used.
We describe current approaches to formal description of

protocols and their weaknesses. We then describe an express-
ive and extendable type system that enables most binary
protocols to be expressed, with support for strongly typed
transformation functions and parsing contexts. We also ad-
dress the social barriers to the adoption of formal techniques,
with a flexible, language-agnostic framework, and principles
for using these techniques in standards documents. Finally,
we outline a simple packet header diagram language, and
show how this can used to express the QUIC protocol [11].

2 DESCRIBING PROTOCOL DATA
Protocols exchange data. It is crucial that protocol data units
(PDUs) exchanged by a protocol are well described. This
includes both their syntax, to allow for automated generation
of parsing and serialisation code, and their semantics, in
the form of a strongly typed representation that allows for
modelling and validation of the protocol.

Syntax description languages include ABNF [7], ASN.1
[16], and the TLS 1.3 presentation language [17]. These are
metalanguages, and are used to formally describe the syntax
of protocols. Each language lends itself to the description
of different protocols: ABNF, for example, is widely used
to define textual protocols, while ASN.1 provides support
for various encodings and is used to define binary formats.
That different languages serve different purposes and com-
munities is not generally problematic. Yet, these languages
can only be used to describe the syntax of protocols. This
is beneficial, but incomplete: it is necessary to capture the
semantics of a protocol to allow for modelling and validation.

Several protocol type systems have also been developed
tomodel the semantics of the data being exchanged, and their
use shows the benefits of formal protocol description. eTPL
[24], an enhanced version of the TLS presentation language,
has been used to generate code that enables the automatic
detection of security vulnerabilities in TLS implementations
[25]. YANG [4], a data modelling language, allows for the
complete description of all data exchanged, and enables con-
formance testing and validation. NetPDL [18], an XML-based
packet header description language, has been used to gener-
ate performant packet processing code [2].
More generalised approaches have also been developed,

such as PADS [10], DataScript [1], PacketTypes [13], and the
Meta Packet Language (MPL) [12]. These allow much of the
semantics of the protocol data to be captured, using a basic
set of types, including bit strings, arrays, and structure types.

Protocols, however, have both an external format (i.e., the
bits sent on the wire) and an internal representation. The
internal representation describes data and computations that
are not exchanged across the network, but that are essential
for parsing and serialisation. While the internal representa-
tion is largely implementation-defined, a model of it must
be captured in a complete description of the protocol. The
techniques described so far couple the external format of the
protocol with its internal representation. This is not suffi-
cient for protocols that have a multi-stage parsing process,
where persistent state or computations are used. For example,
in QUIC, decryption must be modelled to enable parsing.
Recently, extensible protocol representation systems,

that allow for the description of the external syntax and
internal representation of protocols, have been introduced.
Nail [3] is a tool for generating parsers for data formats.
Nail supports multi-stage parsing of complex types using
stream transformations that take a persistent data store (an
arena) and an input stream, and output one or more output
streams. These can be used, for example, to perform DNS
label decompression, highlighting the necessity of providing
extensibility beyond a limited set of predefined types. This
offers flexibility, but streams and arenas are weakly typed:
there is only one stream and one arena type, allowing func-
tions that manipulate these types to be combined in ways
that would produce runtime errors.

Approaches are starting to be developed that give stronger
type guarantees. Narcissus [8] is a parser combinator-style
framework for the Coq proof assistant [9], enabling deriva-
tion of verifiable encoders and decoders. Beyond likely us-
ability barriers to the adoption of a framework based on
a non-mainstream tool such as Coq, which we turn to in
Section 4, Narcissus does not provide support for persistent
storage throughout the parsing process.
These approaches show a clear direction, but with some

important limitations. The range of domain-specific protocol
description languages used by the standards community
implies an abstract protocol data modelling language, de-
coupled from the syntax description, is needed. The type
system to model that data also needs to be safe, extensible,
and provide support for contextual, multi-stage parsing.

3 NETWORK PACKET REPRESENTATION
Building on the ideas discussed in Section 2, we introduce the
Network Packet Representation, a typed protocol representa-
tion that is independent of the protocol description language.
There are three key innovations in our approach. First,

by decoupling the protocol description language from the
Network Packet Representation, we allow arbitrary protocol
description languages to be used, including ad-hoc, domain-
specific languages. We discuss how the Network Protocol

Parsing Protocol Standards to Parse Standard Protocols ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain

Network Packet Representation

Network Bit String Structure Check
constraints

Perform
actions

Context

Parsing
successful

Parsing
failed

Transform
function

If false

If true

Figure 1: Parsing structure types: transform functions instantiate the structure, their constraints are checked, and
actions are performed. The parsing context is a persistent data store, accessible throughout the process.

Representation fits within a broader framework in Section 4.
Second, we recognise that state must be maintained between
PDUs, and to hold out-of-band context, in order to parse
many protocols, and provide first class, strongly typed sup-
port for a persistent parsing context. Finally, we provide
first class support for dependently formatted PDUs, con-
straints on and between PDU fields, and for multi-stage
parsing via typed transformation functions; all of which
are needed to parse complex protocols. The Network Packet
Representation is a typed description of protocol data. The
top-level Protocol type describes the overall protocol data,
and is parameterised by the basic types representing the
protocol data units, the parsing context, and functions.

3.1 Basic Types
The Network Packet Representation includes a number of
basic type constructors, that can be used to compose and
construct complex protocol descriptions.
Bit string types represent raw protocol data. Distinct bit

string types must be defined for each class of protocol data.
For example, a protocol that uses both timestamps and source
identifiers, each being 32 bits in size, will define distinct bit
string types for each, despite them both being identically
sized sequences of bits. All protocol data is eventually parsed
from, or serialised to, a sequence of bit strings.

Enumerated types represent values that can take different
types, dependent on the context. For example, the PDUs
of the QUIC transport protocol could be represented as an
enumerated type with variants for long header, short header,
and version negotiation packets. Enumerated types can also
represent substructures within a PDU that can take different
forms, such as QUIC frame types or RTCP packet types.
Structure types represent heterogeneous compound data.

They represent PDUs, such as TCP segments or QUIC packets.
A structure type represents a sequence of fields, each with
its own type, packed together in the specified order. Each
type has a well-defined size, with no additional padding.
Each field has an associated expression that determines if
it is present. The expression algebra includes arithmetic,
ordinal, equality, and boolean operators. Expressions can

also reference the value or length of preceding fields, or of
parsing context fields (§3.2). In addition, functions (§3.3) can
be used to compute values. For example, RTP data packets
[21] include an optional header extension that is dependent
on the value of the extension (X) field in the fixed header.
Structure types are parameterised by a set of constraints

on the values of their fields; a set of actions that should be
executed on successful parsing and that can change state in
the parsing context; and the types from which the structure
can be created and to which it can be serialised, used to derive
transform functions that perform parsing and serialisation,
as shown in Figure 1.
Constraints determine whether a particular set of fields

forms a valid instance of a particular structure type. The same
expression algebra is available as for field-level presence
expressions; constraints can reference the value of fields
within the structure, access the parsing context, and make
use of helper functions. A simple constraint could be that
a version number field has a fixed value. A more complex
example might be an RTP data packet where, if the P field in
the structure is set to 1, then the Padding and PaddingCount
fields are present, and the length of the Padding array is
equal to the value stored in PaddingCount. Construction of
an instance of a structure type fails if any constraint evaluates
to false. This allows structure types to be variants in an
enumerated type, where the variant type is determined by
the structure type’s constraints.
Finally, structure types must specify types from which

they can be parsed, and to which they can be serialised.
These are used to derive transform functions that indicate
how a structure type is constructed from another type, and
how it is serialised. In the simplest case, a structure type is
constructed from a bit string, and serialises to a bit string.
However, there may be intermediary types in more complex
scenarios. In QUIC, for example, an unprotected packet is
constructed from a protected packet, itself constructed from
a bit string. These transformation functions are important:
they form part of the parsing process.
Array types represent homogeneous compound data. An

array denotes a sequence of values of some other type. Arrays
are dependently typed, with an expression determining their

ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain Stephen McQuistin, Vivian Band, Dejice Jacob, and Colin Perkins

length. This may be a constant expression, representing a
fixed size array, or may depend on fields of an enclosing
type. For example, an RTP packet header contains an array
of contributing source identifiers which is sized based on the
value of the CC field in the enclosing structure.

3.2 The Parsing Context
PDUs of modern protocols often cannot be parsed in isol-
ation. Rather, parsing depends on contextual information
retrieved from previous PDUs or via out-of-band signalling.
Examples include: (i) recording the cryptographic keys and
other information relating to the security context; (ii) stor-
ing parameters specified within earlier packets, to allow for
the parsing of later packets; and (iii) storing parameters spe-
cified in out-of-band signalling, that are needed to parse
packets (e.g., in RTP, signalled payload type values or the
meanings of header extensions [22]). The Network Packet
Representation maintains a parsing context structure to hold
this state. This can be read from using the expression al-
gebra used in the definition of types and their constraints, as
discussed in Section 3.1. Upon the successful parsing of struc-
ture types, the parsing context can be updated. In addition,
transform functions have access to the parsing context.

Making the parsing context a fundamental component of
the type system is an important distinction from approaches
such as Nail [3]. As discussed in Section 2, Nail includes
arenas that are similar to the parsing context described here,
but these are weakly typed. By contrast, each value of the
parsing context in the Network Packet Representation is
typed; this prevents a large class of runtime errors.

3.3 Functions
Function types can be either helper functions or transform
functions. Helper functions return a value, and are used
within the expression algebra. For example, a helper function
could compute a checksum, and this value then used as part
of an expression. Transform functions are associated with
structure types, and define how these types are parsed from
and serialised to, as described in Section 3.1.

Importantly, and again in constrast with Nail [3], functions
are strongly typed. Transform functions are parameterised
by a set of typed parameters, and a return type. This removes
a class of runtime errors: types can only be associated with
functions that can manipulate them.

4 INTEGRATIONWITH STANDARDS
The Network Packet Representation addresses the technical
challenge of describing protocol data. However, our broader
goal is to enable the generation of parser code for a protocol
directly from the standards document that describes it. This

Network Packet
Representation .rsRFC Protocol

Description
Parser

Generator

§4.2 §3 §4.3

Figure 2: Describing, representing, and parsing PDUs

introduces a number of social challenges, requiring standards
developers to change how they write documents.

In this section, we describe a framework for representing
the data formats used by a protocol, and for generating parser
and serialisation code from this description. As shown in
Figure 2, the Network Packet Representation is key to this,
providing the intermediate representation in our system. We
augment this with a framework for parsing descriptions of
protocol data (§4.2), and a code generator that translates the
intermediate representation into parser code (§4.3).

4.1 Principles for Standards Integration
We begin by describing a set of broad design principles that
are applicable to any approach to describing protocol data
that seeks to integrate with the IETF standardisation process:

Most readers are human. As discussed, the standard-
isation process is rightly centred around prose documents.
Standards documents should continue to be written primar-
ily for human readers, who require text and diagrams that
they can understand and discuss. Machine readable elements
that they cannot easily understand should be avoided.

Authorship workflows are diverse. Documents that
includemachine readable elements should not require the use
of specific tools or workflows. This ensures that disruption
to existing workflows, of which there is much diversity, is
minimised. The short-term impact of requiring specific tools
is that adoption is likely to be slow. In the longer term, those
authors with incompatible workflows might be discouraged
from participating in the process. This design principle does
not preclude the promotion of optional, supplementary tools
that aid in the authoring of machine readable elements.

Canonical specifications. Machine readable elements
should be part of the canonical specification of the protocol.
Replicating elements in both human and machine readable
forms within the same document is undesirable, since it
creates the potential for inconsistency between the two.

Expressiveness. Machine readable descriptions should
not limit expressiveness. However, it is important that spe-
cifications remain easy to read and write. An approach that
is easy to use, and that addressesmost use cases, is preferable
to a complex approach that addresses all cases.
It is desirable that any approach can capture the syntax

and parsing steps for most binary protocols. If an approach is

Parsing Protocol Standards to Parse Standard Protocols ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain

not expressive enough then its adoption will be limited, and
authors are likely to revert to defining the protocol in prose,
making it difficult to parse. However, it may be desirable to
limit expressiveness to provide intrinsic safety, security, and
computability guarantees. Protocol description languages
should be minimally expressive (while accommodating the
other principles described), and restrict protocol designs to
those for which safe and secure parsers can be generated.

Minimise required change. There are few components
of standards documents that aren’t optional. It is not possible
to force adoption of a particular approach. The number of
changes required to the way that documents are formatted,
authored, and published should be minimised.
These principles are not inviolable. The purpose of de-

scribing principles is to set out the potential consequences of
doing so, and to give guidance rather than to set strict rules.

4.2 Protocol Description Languages
The standards community uses a number of different formats
to describe protocol data units. These include formally spe-
cified protocol description languages, such as ABNF [7],
ASN.1 [23], and YANG [4], semi-formal descriptions such
as the TLS presentation language [17, 24], and informal
packet header diagrams. As discussed in Section 4.1, any
tool that aims to parse protocol data formats from a broad
set of standards documents must therefore accept multiple
description formats. The Network Packet Representation (§3)
is developed to help meet this goal by providing a language
agnostic framework for describing protocol data.

Parsing structured protocol description languages is well
understood. ABNF and ASN.1 parsers, for example, have long
existed. To the extent that theNetwork Packet Representation
can describe formats that are documented in other formal
languages, translation should be straightforward.
More challenging is parsing informally specified packet

header diagrams. A number of different variants are in wide
use, and many documents use inconsistent formatting within
their descriptions. Despite this, many of these diagrams are
machine readable, and the format can be regularised with
only minimal changes. We have developed a parser for such
formats that can take as input an IETF RFC or Internet-Draft,
and produce aNetwork Packet Representation of the protocol
data units. To support this, we document the Augmented
Packet Header Diagram language [14], a variant of com-
monly used packet diagrams. The format is extremely close
to that in common use, so can be adopted by standards de-
velopers with no additional training or tooling changes.

A full description of the Augmented Packet Header Dia-
gram language is omitted owing to space constraints. The
format remains extremely close to that in common use, so

An Initial Packet is formatted as follows:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+
|1|1| T | R | P |
+-+
| Version |
+-+
| DCID Len |
+-+
| Destination Connection ID (DCID) ...
+-+
| SCID Len |
+-+
| Source Connection ID (SCID) ...
+-+
| Token Length ...
+-+
| Token ...
+-+
| Length ...
+-+
| Packet Number ...
+-+
| Payload ...
+-+

where:

Header Form (HF): 1 bit; HF == 1. The most significant bit (0x80) of
byte 0 (the first byte) is set to 1 for long header packets.

...

DCID Len (DLen): 1 byte; DLen <= 20. This field contains the length,
in bytes, of the Destination Connection ID field that follows it.

Destination Connection ID (DCID): DLen bytes. The Destination
Connection ID field is between 0 and 20 bytes in length. On
receipt, the value of DCID is stored as Initial DCID.

SCID Len (SLen): ...

(a) Describing a QUIC Initial Packet

A Protected Packet is either a Protected Long Header Packet or a
Protected Short Header Packet.

An Unprotected Packet is either a Long Header Packet or a Short
Header Packet.

An Unprotected Packet is parsed from a Protected Packet using
the remove_protection function. The remove_protection function
is defined as:

func remove_protection(from: Protected Packet) -> Unprotected Packet:
...

An Unprotected Packet is serialised to a Protected Packet using
the apply_protection function. The apply_protection function is
defined as:

func apply_protection(to: Unprotected Packet) -> Protected Packet:
...

(b) Translating between protected and unprotected packets

Figure 3: DescribingQUICwith theAugmented Packet
Header Diagram language; ‘...’ indicates elided text

that it can be adopted by standards developers with no ad-
ditional training or tooling changes. In addition, it balances
structure and uniformity, desirable for machine parsing, with
the flexibility needed for practical use.
We illustrate this, in Figure 3, using an excerpt from a

description of the QUIC transport protocol written using the

ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain Stephen McQuistin, Vivian Band, Dejice Jacob, and Colin Perkins

Augmented Packet Header Diagram language [15]. This de-
scribes QUIC Initial packets (Figure 3a) and Protected Packets
(Figure 3b). We make a number of observations:

(1) The format is closely similar to existing packet header
diagrams.We opt for complexity in parsing the descrip-
tion language, rather requiring change in the process,
to ease adoption.

(2) Constraints and the expression algebra are shown: in
Figure 3a, the HF field must equal 0 if a packet is to be
successfully parsed as a long header Initial packet.

(3) In Figure 3a, the parsing context is referenced, to hold
state that is needed to parse later packets in the flow.
Again, we accept parsing complexity to support fa-
miliar syntax, with the phrase On receipt, the value of
DCID is stored as Initial DCID being parsed to add a
field, Initial DCID, to the parsing context and to add
an action to the Initial Packet structure, to update the
context field on receipt of an Initial packet.

(4) In Figure 3b, the remove_protection function is defi-
ned and linked into the parsing flow.

The result is a minor delta on widely used packet diagrams,
that is both machine and human readable.

4.3 Parser Generators
Once the Network Packet Representation has been produced
it can be used to generate code for an implementation. Our
focus, and that of our prototype (http://dx.doi.org/10.5525/
gla.researchdata.1025), is on parser generation, but protocol
serialisation code can be similarly generated. The use of a
common intermediate representation allows us to decouple
code generation for the target programming language from
the protocol description format. This gives two benefits.
First, a single parser generator can be used, irrespective

of the protocol description format. This enables integration
with the standards development processes since it doesn’t re-
quire changes to the way documents are authored to support
automatic generation of code from specifications.

Second, commonality in how parser generators are created
means core functions of code generation can be implemen-
ted once, allowing new code generating back-ends to be
written with relative ease. This includes type checking the
Network Packet Representation, evaluating constraints, and
generating stub functions and actions.
Similarly, the order in which types need to be defined

is the same across many target programming languages. A
depth-first traversal of the intermediate representation type
graph enables construction of parser combinators, a common
idiom. This traversal begins with those types defined as
PDUs, with code for the types contained within composite
types generated before the code for the containing type itself.

This logic does not need to be reimplemented for each target
programming language, easing development.

The result has important implications for security. Protocol
description languages can restrict formats to those for which
safe and secure parsers can be generated or, at a minimum,
ensure that protocol designers are aware of computability
and decidability implications [20]. The language-theoretic
security (LangSec) paradigm demonstrates further benefits
in treating protocols as formal input languages [19].

In practical terms, systems programming languages with
an emphasis on memory safety and strict typing are particu-
larly useful for testing the security of new protocols [5]. For
this reason, our prototype generates Rust code, with parsers
using the nom parser combinator library [6].

Considering again Figure 3, our code generator emits types
and parser combinator functions to for each field of the
packet in turn, followed by the Initial packet as a whole.
This function returns an InitialPacket struct, with its re-
spective fields being instantiated through values returned by
the relevant combinator functions. Field and structure con-
straints are applied for each function call. Stubs are generated
for the remove_protection and apply_protection func-
tions: the function bodies are not captured by the Network
Packet Representation, and so must be defined by the pro-
grammer. The result can be used as part of a larger imple-
mentation.

5 CONCLUSIONS
We have presented a typed representation system that de-
scribes the format, parsing, and serialisation of protocols.
Our work makes three important contributions. First, the
type system is decoupled from the protocol description lan-
guage, allowing flexibility to overcome the social barriers
to adoption. Second, we recognise that state must be main-
tained between the parsing of individual protocol elements,
and support a strongly typed parsing context. Finally, we
provide first class support for dependently formatted PDUs,
constraints between and within PDUs, and support for multi-
stage parsing; required to parse complex protocols.

In addition, we described a framework and principles for
the use of formal description techniques in IETF documents.
Our approach is cognisant of the existing process, starting
with a familiar input language. This provides an initial, but
important, step towards the routine use of tools that can
parse documents, bringing a myriad of benefits, and strength-
ening the trustworthiness of the standards themselves.

6 ACKNOWLEDGEMENTS
This work is funded by the UK Engineering and Physical
Sciences Research Council, under grant EP/R04144X/1.

http://dx.doi.org/10.5525/gla.researchdata.1025
http://dx.doi.org/10.5525/gla.researchdata.1025

Parsing Protocol Standards to Parse Standard Protocols ANRW ’20, July 27–30, 2020, Online (Meetecho), Spain

REFERENCES
[1] G. Back. 2002. DataScript-A specification and scripting language for

binary data. In International Conference on Generative Programming
and Component Engineering. Springer, Pittsburgh, PA, USA, 66–77.

[2] M. Baldi and F. Risso. 2005. A framework for rapid development
and portable execution of packet-handling applications. In Fifth
IEEE International Symposium on Signal Processing and Information
Technology. IEEE, 233–238.

[3] J. Bangert and N. Zeldovich. 2014. Nail: A practical tool for parsing and
generating data formats. In 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14). 615–628.

[4] M. Bjorklund. 2010. YANG – A Data Modeling Language for the
Network Configuration Protocol (NETCONF). Internet Engineering
Task Force. RFC 6020.

[5] P. Chifflier and G. Couprie. 2017. Writing parsers like it is 2017. In
2017 IEEE Security and Privacy Workshops (SPW). IEEE, San Jose, CA,
USA, 80–92.

[6] G. Couprie. 2015. Nom, A Byte oriented, streaming, Zero copy, Parser
Combinators Library in Rust. 142–148. https://doi.org/10.1109/SPW.
2015.31

[7] D. Crocker. 2008. Augmented BNF for Syntax Specifications: ABNF.
Internet Engineering Task Force. RFC 5234.

[8] B. Delaware, S. Suriyakarn, C. Pit-Claudel, Q. Ye, and A. Chlipala.
2019. Narcissus: correct-by-construction derivation of decoders and
encoders from binary formats. Proceedings of the ACM on Programming
Languages 3, ICFP (2019), 1–29.

[9] The Coq development team. 2020. The Coq Proof Assistant. https:
//coq.inria.fr.

[10] K. Fisher and R. Gruber. 2005. PADS: a domain-specific language for
processing ad hoc data. In Proc. PLDI. ACM, Chicago, IL, USA, 295–304.

[11] J. Iyengar and M. Thomson. 2020. QUIC: A UDP-Based Multiplexed
and Secure Transport. draft-ietf-quic-transport-latest.

[12] A. Madhavapeddy, A. Ho, T. Deegan, D. Scott, and R. Sohan. 2007.
Melange: Creating a “Functional” Internet. In Proc. EuroSys. ACM,
Lisbon, Portugal, 101–114.

[13] P. J. McCann and S. Chandra. 2000. Packet types: abstract specific-
ation of network protocol messages. ACM SIGCOMM Computer

Communication Review 30, 4 (2000), 321–333.
[14] S. McQuistin, V. Band, D. Jacob, and C. S. Perkins. 2020. Describing

Protocol Data Units with Augmented Packet Header Diagrams. draft-
mcquistin-augmented-ascii-diagrams-05.

[15] S. McQuistin, V. Band, D. Jacob, and C. S. Perkins. 2020. Describing
QUIC’s Protocol Data Units with Augmented Packet Header Diagrams.
draft-mcquistin-quic-augmented-diagrams-01.

[16] ITU-T Recommendation X.680 (08/15). 2015. Abstract Syntax Notation
One (ASN.1): Specification of basic notation.

[17] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. Internet Engineering Task Force.

[18] F. Risso andM. Baldi. 2006. NetPDL: an extensible XML-based language
for packet header description. Computer Networks 50, 5 (2006), 688–
706.

[19] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto. 2013.
Security applications of formal language theory. IEEE Systems Journal
7, 3 (2013), 489–500.

[20] L. Sassaman, M. L. Patterson, S. Bratus, and A. Shubina. 2011. The
halting problems of network stack insecurity. USENIX; login 36, 6
(2011), 22–32.

[21] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A
Transport Protocol for Real-Time Applications. Internet Engineering
Task Force. RFC 3550.

[22] D. Singer and H. Desineni. 2008. A General Mechanism for RTP Header
Extensions. Internet Engineering Task Force. RFC 5285.

[23] International Telecommunication Union. 2015. Abstract Syntax
Notation One (ASN.1): Specification of basic notation. ITU-T
Recommendation X.680.

[24] A. Walz and A. Sikora. 2017. eTPL: An enhanced version of the TLS
presentation language suitable for automated parser generation. In
9th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS),
Vol. 2. IEEE, 810–814.

[25] A. Walz and A. Sikora. 2017. Exploiting dissent: Towards fuzzing-
based differential black box testing of TLS implementations. IEEE
Transactions on Dependable and Secure Computing (2017).

https://doi.org/10.1109/SPW.2015.31
https://doi.org/10.1109/SPW.2015.31
https://coq.inria.fr
https://coq.inria.fr

	Abstract
	1 Introduction
	2 Describing Protocol Data
	3 Network Packet Representation
	3.1 Basic Types
	3.2 The Parsing Context
	3.3 Functions

	4 Integration with Standards
	4.1 Principles for Standards Integration
	4.2 Protocol Description Languages
	4.3 Parser Generators

	5 Conclusions
	6 Acknowledgements
	References

