
Reinterpreting the Transport Protocol Stack to

Embrace Ossification – Position Paper

Stephen McQuistin

University of Glasgow, UK

s.mcquistin.1@research.gla.ac.uk

Colin Perkins

University of Glasgow, UK

csp@csperkins.org

Abstract—Ubiquitous deployment of middleboxes has resulted
in ossification of the transport layer, with TCP and UDP becoming
part of the narrow waist of the Internet. This is a necessary stage
in the evolution of the network, caused by its progression from
research, to production, to increasingly critical infrastructure.
New transport layer protocols will be needed in future, but since
we are working with essential infrastructure, we cannot expect to
have scope to make wholesale rapid changes. Future development
must be done using the existing protocols as substrates, always
maintaining on-the-wire compatibility. To advance, we must
embrace the ossification of the network, and learn to reinterpret
and extend the existing protocols.

I. INTRODUCTION

The Internet architecture assumes a common internetwork
layer is sufficient substrate for building a global network,
considering communication on a host-to-host basis [1]. Time
has shown this to be only part of the story, however. Not
only does the network need to know the hosts that are party
to a communication, it has become clear that knowledge of
higher layers is also required. This is visible in the plethora of
middleboxes that have become part of the network, inspecting
both transport layer headers and higher layer protocol data
to ‘help’ endpoints and perform various policy enforcement
functions. The tussle space [2] between application and service
provider needs is not effectively realised by the IP layer of the
Internet. Deep packet inspection and other tools are used to
extract the information needed to enforce provider goals.

This has resulted in widespread ossification of the network.
Knowledge of the transport layer, and higher layer protocols, is
encoded in middleboxes throughout the Internet. It is steadily
more difficult to change the core network protocols, because
doing so requires changes to increasingly many middleboxes
and policies, in addition to the endpoints of the communication.

This is a good thing.

The Internet is no longer a research network. Indeed, in
many ways it has moved beyond being a production service,
and is now critical infrastructure in many countries. It should
be difficult to change the infrastructure that a country relies on
to run its emergency services and healthcare systems, manage
physical utilities and industry, coordinate distribution of goods,
and run banking and financial systems. The bar to change ought
to be high. Strong backwards compatibility has to be required.

This does not mean the network should never evolve. There
will be new requirements, and better ways of solving old
problems. However, effective evolution of the network can only
occur within the constraints of the existing infrastructure.

We believe future protocol development
has to come by embracing ossification and
reinterpreting the stack. Rather than force
change where we should be conservative,
we must accept protocol durability. In doing
so, however, we need not abide by layer
boundaries or other semantic limitations that
are not reflected on the wire. We re-imagine
and reinterpret the stack for future needs.

The network of the future will be built on the network of
today. It will have an IP layer; eventually, it may have an IPv6
layer. TCP and UDP will still exist. However, where the layer
boundaries may be drawn, what those layers will be called,
and how their semantics might evolve, are open questions.

II. REINTERPRETING TRANSPORT PROTOCOLS

We are used to thinking of the Internet as having a common
network layer and two widely deployed transport protocols
(TCP, UDP), with other transports, such as SCTP or DCCP,
struggling to find broad deployment. In this model, TCP
provides reliable, in-order, and congestion controlled byte
streams, while UDP provides unreliable, connectionless, and
uncontrolled datagrams.

Perhaps, though, we should view the protocols and their
boundaries differently. We might consider deprecating UDP
as a user-visible protocol, and reusing protocol number 17 to
indicate that a transport identification header sits between the
IP layer and the transport. This header would have the same
wire format as a UDP header, subsuming the port numbers to
become dynamic identifiers for the transport protocol that are
signalled out-of-band, and providing a header checksum that
can optionally be extended to cover the transport layer. The
actual transport layer headers would fit into what is currently
the UDP payload, and could be implemented in the kernel, or as
a set of user-space libraries that offer a more flexible API than
the traditional sockets layer. Encumbrance by legacy behaviour
is comparatively limited, since UDP imposes few constraints
on what data can be sent, provided transport protocol identifiers
are negotiated to avoid well known UDP port numbers subject
to middleboxes (e.g., don’t negotiate transport protocol 53).

By reinterpreting UDP headers as a transport identification
headers, we gain an additional protocol demultiplexing point.
This gives scope to signal new transport protocols, and to
experiment with new designs. Protocols such as DNS, RTP,
DCCP, and SCTP can all be easily deployed in this manner,
interpreted as native transports, rather than as second class



citizens that must tunnel within native UDP packets. In many
ways, of course, this is merely a semantic game, and nothing
has really changed. That doesn’t make it less important: opening
a standard extension point will encourage innovation in a way
that tunnelled deployment will not, by legitimising development.
Perception that an extension point is available matters.

Not everything can run over such a transport identification
layer shim. There are middleboxes that only allow TCP, and
some applications want semantics that are similar to those of
TCP. We must retain a base layer of transport features that
provide a shell of TCP compatibility for these environments.
This base has to include those aspects of the TCP state
machine that are visible to the network, including the three-
way handshake, sequence and acknowledgement numbers,
retransmission of lost sequence numbers, and a sliding window.
Furthermore, the header format and checksum must be retained.

This leaves much that can be reinterpreted to support novel
transport services. Header sequence numbers provide a building
block that can be used to order datagrams or provide reliable
delivery, but there is no requirement that data be presented to
higher layers in order, or without gaps, and an unordered stream
protocol, avoiding head-of-line blocking, can trivially be built,
exposing a new API to deliver portions of the stream as data
arrives. Framing can also be provided as a higher layer with
very low overhead [3]. The header sequence number space must
be completed by retransmissions matching gaps arising from
packet loss, but retransmitted data need not match the original
([4] shows the network will deliver some version of the data
covering that sequence space), allowing relaxed reliability to
be provided. Finally, defining new flow and congestion control
algorithms has a long history, since the algorithm for managing
the sliding window is a local choice. It is clear that reliability,
framing, and ordering semantics, how fast or slow data is
sent, and how flow control is managed can be changed within
the current transport framework and middlebox environment,
provided we accept new views on existing protocol semantics.

III. DIRECTIONS FOR TRANSPORT EVOLUTION

Tunnelling protocols such as DCCP in UDP [5] point
towards reinterpreting UDP as a transport identification layer,
with dynamic negotiation of the encapsulation port identifier.
The WebRTC media channel shows further scope for such
development, with five protocols (STUN, DTLS, RTP, RTCP,
and SCTP) currently running on a single UDP port that could
run on an explicit demultiplexing layer (e.g., a variant of [6]).

Multipath TCP [7] shows how a transport can be extended
to make use of multiple flows. We rather consider single
flow semantics: relaxing reliability, ordering, timeliness, and
congestion control, and treating TCP as a protocol for reliable
delivery of sequencing data, that provides building blocks
reliability and ordering, allows flexibility in the higher layers.

Exploration of the design space of transport protocols has
largely been conducted through the development of clean-slate
solutions. By modularising existing transport protocols into
transport services, clean-slate designs become easier to deploy.

IV. EXAMPLE: UNORDERED, TIME-LINED, TRANSPORT

As an example of the ideas expressed in Section II, we
sketch an outline for a new unordered, time-lined, transport

protocol, designed to improve performance for latency-sensitive
real-time applications, as a TCP variant [8]. This provides three
key features: partial reliability, time lines, and dependencies.

First, we layer on the base shell of features mandated by
TCP to give an unordered, partially reliable, datagram delivery
service. This reuses the sequence numbers to detect loss, but
not provide ordering; the connection and 3-way handshake; and
unmodified TCP congestion control. We then add a time-aware
layer above the shell of TCP, allowing applications to specify
an expiry time for each datagram [9]. Once a data datagram
expires, it will no longer be retransmitted, and a suitable
replacement will be selected from live datagrams. Finally, we
allow dependencies between datagrams to be expressed; if a
datagram expires, then all of its dependencies also expire. These
changes provide two benefits. By removing the guarantee of
in-order delivery, we remove head-of-line blocking and reduce
latency, improving real-time performance. Then, by relaxing
the reliability guarantee, we enhance good-put by increasing the
probability that datagrams entering the network will be useful
to the receiver. Both are beneficial to our target applications.

It is important to characterise the protocol behaviour
expected by middleboxes, and delineate this from the semantics
that are imposed only by endpoints. The design of this
unordered, time-lined, transport illustrates how components of
existing transport protocols (e.g., TCP’s sequencing component)
can be combined with application-layer knowledge to produce
a deployable domain specific protocol within these constraints.

V. CONCLUSIONS

The lower layers of the Internet protocol stack are critical
infrastructure, that rightly resist change. New transport services
are only deployable if they respect the syntactic and semantic
constraints imposed by the existing network. As we have shown,
there is scope to change transport within these constraints.
However, the standards community has held inviolable aspects
of the transport semantics that are not broadly interpreted by
the network, limiting development. To move forward, we must
understand what semantics are constrained only by tradition,
and allow them to change to support new services.

REFERENCES

[1] D. D. Clark, “The design philosophy of the DARPA Internet protocols,”
in Proc. SIGCOMM. Stanford, CA: ACM, Aug. 1988.

[2] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle
in cyberspace: Defining tomorrow’s Internet,” in Proc. SIGCOMM.
Pittsburgh, PA: ACM, Aug. 2002.

[3] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford, “Fitting
square pegs through round pipes: Unordered delivery wire-compatible
with TCP and TLS,” in Proc. NSDI. San Jose, CA: USENIX, Apr. 2012.

[4] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in Proc. IMC. Berlin,
Germany: ACM, Nov. 2011.

[5] T. Phelan, G. Fairhurst, and C. S. Perkins, “A DCCP UDP encapsulation
for NAT traversal,” IETF, 2012, RFC 6773.

[6] M. Westerlund and C. S. Perkins, “Multiple RTP sessions on a single
lower-layer transport,” IETF, Oct. 2013, work in progress.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions
for multipath operation with multiple addresses,” IETF, 2013, RFC 6824.

[8] S. McQuistin, “Transport-layer support for multimedia applications,” MSci
Thesis, School of Computing Science, University of Glasgow, Apr. 2014.

[9] B. Mukherjee and T. Brecht, “Time-lined TCP for TCP-friendly delivery
of streaming media,” in Proc. ICNP. Osaka, Japan: IEEE, Nov. 2000.


	Introduction
	Reinterpreting Transport Protocols
	Directions for Transport Evolution
	Example: Unordered, Time-lined, Transport
	Conclusions
	References

